
ANALYSIS OF UNSTEADY WAVES IN SOLIDS 5023 

The foregoing equations are valid locally and instan
taneously, i . e., at a given particle X and time t, no 
matter what the conditions may be at surrounding par
ticles or previous times. The conditions need not be, 
and usually are not, uniformly valid in the sense that 
any quantity appearing in them remains constant. Nu
merous discussions of the growth or decay of waves 
have been given. 9,10 

IV. ACCELERATION WAVES 

In this section, attention will be directed to the analysis 
of acceleration waves. First, the consequences of the 
conditions of definition of an acceleration wave are ex
amined. Since U=un-xn and [Un] =0, then [U]=-[xn]. 
Since [x~]=o for an acceleration wave, it follows that 
[X.]=O and 

[U]=O. 

It is immediately clear that by (3.3) 

[p]=O. 

(4.1) 

(4.2) 

By (4.1), (4.2), and the definition of an acceleration 
wave, (3.4) takes the form 

for an acceleration wave. Now, consider the Piola
Kirchhoff stress TkK which is related to the Cauchy 
stress [km by the equationll 

(4.3) 

(4.4) 

where da is the area element in the deformed material 
and dA is the area element in the undeformed material. 
Here, the relation between nand N is given by Eq. 
(182.8) of Ref. 8. By (4.3) and (4.4) it follows im
mediately that 

(4.5) 

where 1* = 1*KN K. Therefore, by requiring relations 
(3.3) and (3.4) be satisfied, it follows that the density 
and the stress vector must be continuous across an 
acceleration wave. 

The jumps in the second derivatives of motion are 
given by 

[Xk] = rPif, 

[~m] = - Uaknm' 

(4.6) 

where if are the components of an arbitrary surface 
vector called the wave amplitude. It follows immediate
ly that 

(4.7) 

Since the differential form of the conservation of mass 
must be satisfied on either side of a Singular surface, 
then 

[p + p~Kl =0, 

which reduces to 

(4.8) 

(4.9) 

for an acceleration wave. Furthermore, (4.9) with (4.7) 
becomes 

(4.10) 

Since [Tk]=O, and applying the dual of Eq. (180.4) of 
Ref. 8 to Tk, it follows that 

[iW] = - UANLT~L] = - UN[NLT!'fNK + TkKNLNK,L]. 

(4.11) 

In addition, if [1*K]=O, it can be shown that (4.11) 
together with the differential form of the conservation 
of linear momentum reduces to 

(4.12) 

where Po is the denSity at t = to. Furthermore, it can be 
shown without any additional assumptions that (4.12) 
has the alternate form 

(4.13) 

Thus, two very important relations, given by (4.10) and 
(4.13), have been derived. It is clear that these condi
tions are arrived at independent of the material in 
question. Therefore, they may be used to determine the 
rate of change of density and the rate of change of the 
stress behind an acceleration wave. On the other hand, 
(4.13) may be used to determine the local speed of 
propagation of an acceleration wave in a particular 
material when its constitutive relation is given. 

V. SPECIALIZATION TO ONE·DIMENSIONAL 
MOTIONS 

The relations (4.10) and (4.13) are, of course, quite 
general and must be specialized for application to the 
analysis of plane longitudinal one-dimensional motions. 
Let the Xl axis be coincident with such a motion. Then 
n l = 1 and Xl = x are the only nonzero components of the 
normal and the acceleration. In this situation (4.10) and 
(4.13) imply that 

[p]U - p[x] = 0, 

and 

[a] + pu[x] = 0, 

where CJ= tll. The strain E is given by 

E = (Po / p) -1. 

Consequently, 

p= - (,r / po)e; 

and since pU = PoU N' the relations (5.1) may be re
written in the forms 

[el = - (l / U N)[X], 

[a] = - POUN[x], 

(5.1) 

(5.2) 

which are most convenient for the analysis of particle
velocity-time data. When stress-time data are to be 
reduced, the forms 

[El = (1 / PoU;)[a], 

[x] = - (l / poUN )[u] 
(5.3) 

are appropriate. The quantity Po, the density of the body 
in the reference state, is a constant known in advance. 
The use of the measure UN of the wave speed is also 
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FIG. 1. Recorded velocity history with an approximation by a 
sequence of chords . The discontinuities where the chords join 
represent acceleration waves . 

convenient, as it is the quantity inferred by measure
ment .of wave transit time between given fixed material 
particles . 

To illustrate the application of Eq. (5 . 1) to the inter
pretation of experimental data the particle-velocity 
history shown in Fig . 1 is considered as an example . 
This history is considered to have been recorded at a 
given plane in the interior of a sample without inter
ference with the propagating wave . The actual recorded 
waveform is approximated by a system of chords such 
as that shown. Further attention is restricted to this 
piecewise linear approximation . The discontinuities in 
slope where the chords meet are acceleration waves , 
and are treated as outlined in the preceding paragraphs . 

If, for Simplicity, the chord apprOXimation is chosen so 
that the arrivals of the acceleration waves at the re
cording station are all equally spaced in time by an 
amrunt ~t, the particle accelerations in the regions 
ahead of an behind the ith wave are 

xt ={x, -x,_J/~t, xi={x'+1- x,)/~ t , 

respectively, and we have 

[x], = - (xi-l - 2x, + X'+1) / ~t . (5.4) 

Similar relations hold for other quantities of interest of 
interest although they will be only approximately cor
rect, even if the actual particle-velocity record is 
piecewise linear. Relations corresponding to (5. 4) for 
jumps in stress and strain rates are 

[a],'= - (0"-1 -20', +0"+1)/~t, 

[e], = - (Ei-l - 2E, +E,.J/ ~t. 

Substitution of (5. 4) and (5. 5) into (5 . 2) gives the 
formulas 

Eh1 = 2e, -eH - (l / U NI)(Xi-l - 2x, + X'+l) ' 

0',.1 =20', -O'i-l -POUN ,{X'_l -2x, +x'+l) ' 

(5 . 5) 

(5.6) 

from which the stress and strain at the {i + l)st wave 
can be calculated from the stress and strain at previous 
waves , recorded values of particle velocity, and a 
knowledge of the propagation velocity of the ith wave. 
A similar calculation based on (5 .3) yields formulas for 
finding e and x from measur ed stress histories . 

It should be pointed out that the quantity UN' (t) appearing 
in (5. 6) is the acceleration wave speed which, for very 
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large classes of materials, is the sound speed. 12,13 In 
order to carry out data reduction with (5. 6), this speed 
must be known in advance or determined experimentally. 
First, if the velocity-time data or the stress-time data 
are available for two stations, then the instantaneous 
wave speed may be approximated from calculations 
based on the difference in arrival times of each parti
cle-velocity or stress level. On the other hand, if both 
the velocity-time data and the stress-time data are 
available at a single station, then the wave speed fol
lows directly by applying (5. 6). 

Finally, it should be pointed out that many experiments 
involve perturbations to the incident wave shapes . As 
demonstrated in the Appendix, the acceleration wave 
theory provides a basis for solving the resulting wave 
interaction problems. 

VI. DISCUSSION 

The acceleration wave theory presented here and the 
theory of Fowles and Williams7 are broadly applicable 
to many solids because these theories involve no as
sumptions concerning the constitutive relation . How
ever , the two theories lead to significantly different 
demands upon the experimental determination of materi
al response from wave-propagation experiments . The 
dual-wave theory requires measurements of both stress 
and velocity histories. On the other hand, the accelera
tion wave analYSis requires only measurement of either 
the stress or velocity history. Both theories require 
measurements of wave speed. In the acceleration wave 
theory , the average speed of either the stress or the 
velocity wave between two closely spaced stations is 
employed as an approximation to the instantaneous 
sound speed, whereas the dual-wave theory requires 
simultaneous measurements of both stress and velocity 
waves. According to the acceleration wave theory, 
simultaneous measurements of stress and particle 
velocity at a single station permits the instantaneous 
acceleration wave speed to be calculated. 

In effect, the acceleration wave theory places no new 
demands upon the experiments beyond those customary 
in shock-wave studies, even though the theory is 
applicable to more complex material response. Since 
previous analyses of waves are known to provide a close 
approximation to the real response, the acceleration 
wave theory should provide an adequate base for analyz
ing the response of many solids with the use of existing 
experimental instruments and techniques. Furthermore, 
as shown in the Appendix, the acceleration wave theory 
leads to fairly simple and straightforward techniques 
for solving wave interaction problems which are fre
quently introduced by the measuring instruments. 

In contrast to the acceleration wave theory, the dual
wave theory appears to require experiments which are 
not possible with existing capabilities . Further more, 
if that capability were developed it is not clear whether 
it would result in any Significant change in the end re
sult of describing material response. Butcher14 has 
performed computer analyses of several rate-depen
dent solids which indicate that differences in wave 
speeds are too small to be significant. 
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